AlephBFT

Security Assessment
June 21, 2021

Prepared For:
Adam Gagol | Cardinal Cryptography & Aleph Zero Foundation

adam.gagol@cardinals.cc

Prepared By:
Artur Cygan | Trail of Bits

artur.cygan@trailofbits.com

Will Song | Trail of Bits
will.song@trailofbits.com

Changelog:
June 21, 2021: Initial report draft
July 27, 2021: Added Appendix D: Fix Log

mailto:adam.gagol@cardinals.cc
mailto:artur.cygan@trailofbits.com
mailto:will.song@trailofbits.com

Executive Summary
Project Dashboard
Engagement Goals
Coverage

Recommendations Summary
Short term

Long term

Findings Summary
1. Code documentation does not reference the paper
2. Use of different types to represent rounds

3. Use of incorrect loop break to handle add_to_store and handle_events failures
4. Incorrect state rollback upon removal of forker’s units

5. Lack of error handling in Terminal's post-insert hooks

6. Different byte representations decode to the same data

7. Errors in async code leave the program in an inconsistent state

8. Blocking 1/0 in Network trait implementations will block async runtime threads

9. Inconsistent handling of closed channel errors

A. Vulnerability Classifications

B. Code Quality Recommendations
C. Fuzzing the Custom Serialization Roundtrip

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 1

Executive Summary

From June 7 to June 18, 2021, the Aleph Zero Foundation engaged Trail of Bits to review the
security of AlephBFT, a Rust implementation of the Aleph Zero consensus protocol. Trail of
Bits conducted this assessment over four person-weeks, with two engineers working from
commit hash b73a6caf from the AlephBFT repository.

During the first week of the engagement, we focused on gaining an understanding of the
codebase and reading the documentation and the Aleph Zero paper. We looked for
common Rust security flaws and started the review of the Terminal, Reliable Multicast, and
Alerts components. During the second week, we performed a manual review of the other
components, focusing on the Member and Consensus. We also checked the data
serialization routines and the interfaces exposed by the AlephBFT library.

Our review resulted in nine findings ranging from low to informational severity. The
low-severity finding involves the handling of errors in the asynchronous code, which could
lead to an inconsistent node state in the event of a panic. The informational-severity
findings pertain to minor issues that currently have no measurable security impact on the
system; however, addressing those findings would further harden the protocol.

AlephBFT ships with comprehensive, up-to-date documentation describing the
implementation and how it relates to the paper. Additionally, the code contains an
extensive test suite, covering scenarios such as unreliable networks and Byzantine nodes
and including random testing akin to property-based testing. Nevertheless, we found a
deficiency in negative testing, resulting in a lack of coverage of certain code paths
(TOB-ALEPH-004); the AlephBFT code also lacks fuzzing harnesses for incoming data, which
would increase all stakeholders’ confidence in the protocol's reliability.

As AlephBFT abstracts away many critical components, such as signing, key management,
and networking processes, it is not possible to reason about the security of the end system
as a whole by assessing only AlephBFT. We therefore recommend performing additional
security assessments of the systems into which AlephBFT is integrated.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 2

https://github.com/Cardinal-Cryptography/AlephBFT/tree/b73a6cafa29d9bef78857ec817f078fe677bd6d6
https://github.com/Cardinal-Cryptography/AlephBFT
https://arxiv.org/abs/1908.05156

Project Dashboard

Application Summary

Name AlephBFT
Version b73a6caf
Type Rust
Platform Native

Engagement Summary

Dates June 7 - June 18, 2021
Method Full knowledge
Consultants Engaged 2

Level of Effort 4 person-weeks

Vulnerability Summary

Total Low-Severity Issues 1 (]
Total Informational-Severity Issues 8 EEEEEEESN
Total [9

Category Breakdown

Data Validation 2 Em

Denial of Service 1]

Error Reporting 3 RN

Patching 1]

Undefined Behavior 2 mm
Total |9

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 3

https://github.com/Cardinal-Cryptography/AlephBFT/tree/b73a6cafa29d9bef78857ec817f078fe677bd6d6

Engagement Coals

The engagement was scoped to provide a security assessment of AlephBFT, a Rust
implementation of the Aleph Zero consensus protocol.

Specifically, we sought to answer the following questions:

Is it possible to crash a node by using certain crafted input?

Is it possible to spam the protocol to cause a denial of service?

Would an attack prevent honest nodes from producing output?

Are there any situations in which nodes could reach different conclusions on a
matter?

e If the number of Byzantine nodes is below the assumed threshold, will the
consensus protocol operate as expected?

Does the implementation match that outlined in the documentation and the paper?
Does the Aleph Zero protocol adhere to its proposed Byzantine fault tolerance?

Coverage

Documentation. We spent the first two days of the audit reading the documentation
included in the GitHub repository and the Aleph Zero protocol paper to familiarize
ourselves with the protocol. We also assessed the documentation’s quality.

AlephBFT. We performed an in-depth manual review of the Rust code, looking for
discrepancies between the documentation and the paper. We also analyzed the quality of
the test suite, worked to identify any fuzz targets, and looked for common Rust mistakes
(using static analysis tools such as cargo-audit and rust-clippy). Lastly, using
cargo-fuzz, we developed a fuzzing harness to validate the serialization of data structures.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 4

Recommendations Summary

This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short Term

U Add comments to the AlephBFT code referencing specific sections or paragraphs of
the paper and noting any deviations from the specification. TOB-ALEPH-001

U Define the Round type as ul6 and use that type in all code that deals with rounds.
Upcast the Round type to a usize value when accessing vector elements. Alternatively,
change the casting process to include a check for overflows and to terminate the program
if an overflow occurs. This will prevent the program from continuing to execute with
corrupted data. TOB-ALEPH-002

U Either provide a label for the outer loop and use it to break out of that loop or use
a return statement. That way, the code will work as intended. TOB-ALEPH-003

U Ensure that the self.n_units_per_round state is decremented when a forker's
units are removed from the store. TOB-ALEPH-004

U Enable the hook mechanism to return a Result and to take appropriate action in
the update_on_dag_add function. Update the registered hooks such that they return Err
when an unbounded_send error occurs. TOB-ALEPH-005

U Change the BoolNodeMap Decode implementation to use only the canonical
encoding. TOB-ALEPH-006

U Modify the SpawnHandle trait to return a task handle and ensure that parent tasks
wait for all child tasks they have spawned, in addition to the exit signal. If a child task
exits with an unrecoverable error (e.g., one that would make restarting the task pointless),
the parent task should terminate the other child tasks and exit. Lastly, ensure that
shutdowns are propagated upward. TOB-ALEPH-007

U Either mark send and broadcast as async or document the Network trait, explaining
that the send and broadcast implementations must not block. TOB-ALEPH-008

U Choose one of the two methods of handling closed channel errors and use it
wherever possible; if it would make more sense to use the other in certain cases,
document that decision. TOB-ALEPH-009

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 5

Long Term
U Extensively document complex code. TOB-ALEPH-001

U Use types that adhere as closely as possible to the data semantics. TOB-ALEPH-002

U Make sure that all branches of the code are covered by the test suite.
TOB-ALEPH-003, TOB-ALEPH-004, TOB-ALEPH-005

U Add a fuzzing harness or property test to ensure that the result of composing the
decode and encode functions is an identity function. TOB-ALEPH-006

U Add tests to make sure that the system shuts down correctly when one of its tasks
panics. TOB-ALEPH-007

U Be mindful of the fact that blocking functions in async code may introduce subtle
performance issues that lead to downtime. TOB-ALEPH-008

U Ensure that the codebase handles errors consistently. This will make the code easier
to develop and understand. TOB-ALEPH-009

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 6

Findings Summary

| Title Type Severity

1 | Code documentation does not reference the Patching Informational
paper

2 Use of different types to represent rounds Data Validation Informational

3 Use of incorrect loop break to handle Undefined Informational
add to store and handle events failures Behavior

4 Incorrect state rollback upon removal of forker’s | Undefined Informational
units Behavior

5 | Lack of error handling in Terminal’s post-insert Error Reporting Informational
hooks

6 Different byte representations decode to the Data Validation Informational
same data

7 | Errors in async code leave the program in an Error Reporting Low
inconsistent state

8 Blocking 1/0 in Network trait implementations Denial of Service | Informational
will block async runtime threads

9 [Inconsistent handling of closed channel errors Error Reporting Informational

© 2021 Trail of Bits

Aleph Zero Foundation AlephBFT Assessment | 7

1. Code documentation does not reference the paper

Severity: Informational Difficulty: N/A
Type: Patching Finding ID: TOB-ALEPH-001
Target: AlephBFT

Description

The AlephBFT Rust code implements the consensus protocol outlined in the Aleph Zero
paper; however, it does not reference specific sections of the paper, which makes it more
difficult to audit the code. For example, specific references to the “Practical Considerations”
section, which details many modifications and improvements made to the protocol, would
be beneficial.

Recommendations
Short term, add comments to the AlephBFT code referencing specific sections or
paragraphs of the paper and noting any deviations from the specification.

Long term, extensively document complex code.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 8

2. Use of different types to represent rounds

Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-ALEPH-002
Target: AlephBFT

Description

The code uses different types to represent rounds in the protocol (figures 2.1 and 2.2). It
primarily uses the Round type, which is defined as a usize type. However, parts of the
protocol code (like that in figure 2.3) do not use this type, which is non-ideal. When a
UnitCoord is created, a round is passed in as Round (usize) and downcast to a u16 value
(figure 2.2). If the round number is larger than ule, the program will continue running with
an incorrect round number (specifically, the remainder of the downcasting operation).
However, because the current maximum number of rounds is set rather low, none of the
round numbers will be larger than u1le.

/// An asynchronous round of the protocol.
pub type Round = usize;

Figure 2.1: src/lib.rs#L76-L77

#[derive(Debug, Clone, Copy, Eq, PartialEq, Encode, Decode, StdHash)]
pub(crate) struct UnitCoord {

pub(crate) round: ulé,

creator: NodeIndex,

}

impl UnitCoord {
pub fn new(round: Round, creator: NodeIndex) -> Self {
Self {
creator,
round: round as ulé6,

}

pub fn creator(&self) -> NodeIndex {
self.creator

}

pub fn round(&self) -> Round {
self.round as Round

}

Figure 2.2: src/units.rs#L10-L31

pub(crate) struct UnitStore<'a, H: Hasher, D: Data, KB: KeyBox> {

by_coord: HashMap<UnitCoord, SignedUnit<'a, H, D, KB>>,

by_hash: HashMap<H::Hash, SignedUnit<'a, H, D, KB>>,

parents: HashMap<H::Hash, Vec<H::Hash>>,

//this is the smallest r, such that round r-1 is saturated, i.e., it has at least
threshold (~(2/3)N) units

round_in_progress: usize,

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 9

https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/lib.rs#L76-L77
https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/units.rs#L10-L31

threshold: NodeCount,

//the number of unique nodes that we hold units for a given round
n_units_per_round: Vec<NodeCount>,

is_forker: NodeMap<bool>,

legit_buffer: Vec<SignedUnit<'a, H, D, KB>>,

max_round: usize,

Figure 2.3: src/units/store.rs#L3-L15

Recommendations

Short term, define the Round type as u16 and use that type in all code that deals with
rounds. Upcast the Round type to a usize value when accessing vector elements.
Alternatively, change the casting process to include a check for overflows and to terminate
the program if an overflow occurs. This will prevent the program from continuing to
execute with corrupted data.

Long term, use types that adhere as closely as possible to the data semantics.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 10

https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/units/store.rs#L3-L15

3. Use of incorrect loop break to handle add_to_store and handle_events
failures

Severity: Informational Difficulty: High
Type: Undefined Behavior Finding ID: TOB-ALEPH-003
Target: AlephBFT Terminal

Description

The Terminal code that executes event handlers (figure 3.1) uses a break to stop the
processing of events when an error occurs. However, because the break stops the for loop
instead of the outer loop, the events will continue to be processed. This could lead to an
undesirable node state.

Currently, the error can be caused only by a closed channel, which is considered a
programming mistake that should not ever happen. However, further developments in the
AlephBFT code could introduce additional error conditions more likely to trigger this issue.

pub(crate) async fn run(&mut self, mut exit: oneshot::Receiver<()>) {
loop {
futures::select! {
n = self.ntfct_rx.next() => {
match n {
Some(NotificationIn::NewUnits(units)) => {
for u in units {
if self.add_to_store(u).is_err() ||
self.handle_events().is_err() {
break

1

¥
/7 (.0)

/7 (L)

Figure 3.1: src/terminal.rs#L352-L379

Recommendations
Short term, either provide a label for the outer loop and use it to break out of that loop or
use a return statement. That way, the code will work as intended.

Long term, make sure that all branches of the code are covered by the test suite.

References
e Rust By Example: Nesting and labels

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 11

https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/terminal.rs#L352-L379
https://doc.rust-lang.org/rust-by-example/flow_control/loop/nested.html

4. Incorrect state rollback upon removal of forker’s units

Severity: Informational Difficulty: High
Type: Undefined Behavior Finding ID: TOB-ALEPH-004
Target: AlephBFT Unit Store

Description

In the mark_forker function, any of the forker's units with round numbers larger than that
of the round in progress are removed from the store (figure 4.1). This operation should
revert the store’s state, making it as though the store never contained those units.
However, this does not actually occur; instead, the number of units in the
self.n_units_per_round state is incremented as units are added (figure 4.2), but it is not
decremented by mark_forker.

The error does not currently impact the correctness of AlephBFT.

for round in self.round_in_progress + 1..=self.max_round {

let coord = UnitCoord::new(round, forker);

if let Some(su) = self.unit_by_coord(coord).cloned() {
/] (o.0)
self.by_coord.remove(&coord);
let hash = su.as_signable().hash();
self.by_hash.remove(&hash);
self.parents.remove(&hash);
// Now we are in a state as if the unit never arrived.

Figure 4.1: src/units/store.rs#L115-L119

if self.by_coord.insert(coord, su.clone()).is_none() {
// This means that this unit is not a fork (even though the creator might be a forker)
self.n_units_per_round[round] += NodeCount(1);

Figure 4.2: src/units/store.rs#L146-L149

Recommendations
Short term, ensure that the self.n_units_per round state is decremented when a forker's
units are removed from the store.

Long term, make sure that all branches of the code are covered by the test suite.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 12

https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/units/store.rs#L115-L119
https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/units/store.rs#L146-L149

5. Lack of error handling in Terminal’s post-insert hooks

Severity: Informational Difficulty: High
Type: Error Reporting Finding ID: TOB-ALEPH-005
Target: AlephBFT

Description

The Terminal allows users to register post-insert hooks that will be executed when a unit is
added to the DAG (figure 5.1). The handler type does not include a means of dealing with a
failure, and the program will continue regardless of the outcome of running a handler.
There are two hooks registered in the Consensus: : run function. Both of them can fail
when sending data to a channel; however, any errors will be effectively silenced (figure 5.2).

fn update_on_dag _add(&mut self, u_hash: &H::Hash) -> Result<(), ()> {

/1 ()
self.post_insert.iter().for_each(|f| f(u.clone()));
/7 ()

Figure 5.1: src/terminal.rs#L233-1255

// send a new parent candidate to the creator
terminal.register_post_insert_hook(Box::new(move |u| {
if let Err(e) = parents_tx.unbounded_send(u.into()) {
debug! (target: "AlephBFT", "channel to creator is closed {:?}", e);
}

1)
// try to extend the partial order after adding a unit to the dag

terminal.register_post_insert_hook(Box: :new(move |u| {
if let Err(e) = electors_tx.unbounded send(u.into()) {
debug! (target: "AlephBFT", "channel to extender is closed {:?}", e);
}
1)

Figure 5.2: src/consensus.rs#L44-155

Recommendations

Short term, enable the hook mechanism to return a Result and to take appropriate action
in the update_on_dag_add function. Update the registered hooks such that they return Err
when an unbounded_send error occurs.

Long term, make sure that all branches of the code are covered by the test suite.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 13

https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/terminal.rs#L233-L255
https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/consensus.rs#L44-L55

6. Different byte representations decode to the same data

Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-ALEPH-006
Target: AlephBFT

Description

Data structures in AlephBFT use Parity SCALE Codec for serialization. The BoolNodeMap
structure has custom Encode and Decode trait implementations (figure 6.1). The
implementation of the Decode trait allows for the use of different byte representations,
since the trait does not check whether the decoded capacity reflects the number of bytes.
The BitVec is simply truncated to the decoded value, which has no effect when the
capacity exceeds the BitVec length. BoolNodeMap is deeply embedded in the Unit
structure.

The use of different byte representations for the same data could confuse honest nodes;
for example, if a signature were checked against the byte representation and later
re-encoded into different bytes, the signature would no longer match the byte
representation. AlephBFT is not affected by this issue, since bytes are decoded and then
encoded before signatures are checked against the canonical representation.

We found this issue by fuzzing the decoding cycle, as detailed in Appendix C.

impl Encode for BoolNodeMap {
fn encode_to<T: Output + ?Sized>(&self, dest: &mut T) {
(self.0.len() as u32).encode_to(dest);
self.0.to_bytes().encode_to(dest);

}

impl Decode for BoolNodeMap {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let capacity = u32::decode(input)? as usize;
let bytes = Vec::decode(input)?;
let mut bv = bit_vec::BitVec::from_bytes(&bytes);
bv.truncate(capacity);
Ok (BoolNodeMap(bv))

Figure 6.1: src/nodes.rs#L126-L141

Recommendations
Short term, change the BoolNodeMap Decode implementation to use only the canonical
encoding.

Long term, add a fuzzing harness or property test to ensure that the result of composing
the decode and encode functions is an identity function.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 14

https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/nodes.rs#L126-L141

7. Errors in async code leave the program in an inconsistent state

Severity: Low Difficulty: High
Type: Error Reporting Finding ID: TOB-ALEPH-007
Target: AlephBFT

Description

Most of the AlephBFT code is executed asynchronously through a hierarchy of tasks. While
AlephBFT does not enforce the use of a specific async runtime, the most popular choice is
the Tokio runtime, also used in AlephBFT tests. When code running in a Tokio task calls
panic, it will default to stopping the task, and the resulting JoinHandle will return an Err.
By contrast, in non-async Rust code, a call to panic will terminate the whole program and
lead to an unexpected program state.

The panicking functions unwrap and expect are used throughout the code with the
assumption that they will terminate the program. However, a task termination does not
initiate a system shutdown, as parent tasks do not monitor or wait for the child tasks that
they spawn. The Consensus task, for example, spawns Extender, Creator, and Terminal
tasks, but the spawn function of the SpawnHandle trait does not return a handle. The
Consensus task assumes that all child tasks it has spawned will execute correctly and waits
only for a shutdown message (figure 7.1). The same pattern is present in the Member code.

pub(crate) async fn run<H: Hasher + 'static>(/* (...) */) {
debug! (target: "AlephBFT", "{:?} Starting all services...", conf.node_ix);

let n_members = conf.n_members;

let (electors_tx, electors_rx) = mpsc::unbounded();
let mut extender = Extender::<H>::new(conf.node_ix, n_members, electors_rx,
ordered_batch_tx);
let (extender_exit, exit _rx) = oneshot::channel();
spawn_handle.spawn("consensus/extender", async move {
extender.extend(exit_rx).await

1)

let (parents_tx, parents_rx) = mpsc::unbounded();
let new_units_tx = outgoing_notifications.clone();
let mut creator = Creator::new(conf.clone(), parents_rx, new_units_tx);

let (creator_exit, exit_rx) = oneshot::channel();
spawn_handle. spawn(

"consensus/creator",

async move { creator.create(exit_rx).await },

)s

let mut terminal = Terminal::new(conf.node_ix, incoming_notifications,
outgoing notifications);

/1 (o)

let (terminal_exit, exit_rx) = oneshot::channel();
spawn_handle. spawn(

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 15

"consensus/terminal”,
async move { terminal.run(exit_rx).await },
)s
debug! (target: "AlephBFT", "{:?} All services started.", conf.node_ix);

let _ = exit.await;
// we stop no matter if received Ok or Err

let _ = terminal_exit.send(());
let _ = creator_exit.send(());
let _ = extender_exit.send(());

debug! (target: "AlephBFT", "{:?} All services stopped."”, conf.node_ix);

Figure 7.1: src/consensus.rs#L13-L71

The move_units_to_consensus function also contains an unsupervised task (figure 7.2).
Although the task is not short-lived, the same concerns apply.

fn move_units_to_consensus(&mut self) {
for su in self.store.yield_buffer_units() {
let full_unit = su.as_signable();
let unit = full_unit.unit();
if let Some(avail_fut) = self.data_io.check_availability(full_unit.data()) {
let tx_consensus = self.tx_consensus.clone();
self.spawn_handle
.spawn("member/check_availability", async move {
/7 (o)
1
} else {
self.send_consensus_notification(NotificationIn::NewUnits(vec![unit]))
}

Figure 7.2: src/member.rs#L425-L445

It is possible to modify the panic behavior by configuring the program to abort upon a
panic; however, this might not be beneficial to the end binary using AlephBFT.

Exploit Scenario

A panic occurs in the async code; the Tokio task it is running on is terminated, and the
other tasks keep running. This violates the assumption that the entire program will be
terminated and causes the program to enter an unexpected state.

Recommendations

Short term, modify the SpawnHandle trait to return a task handle and ensure that parent
tasks wait for all child tasks they have spawned, in addition to the exit signal. If a child task
exits with an unrecoverable error (e.g., one that would make restarting the task pointless),
the parent task should terminate the other child tasks and exit. Lastly, ensure that
shutdowns are propagated upward.

Long term, add tests to make sure that the system shuts down correctly when one of its
tasks panics.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 16

https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/consensus.rs#L13-L71
https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/member.rs#L425-L445

References
e Module tokio: :task: Working with tasks
e Aborting on panic

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 17

https://docs.rs/tokio/0.2.4/tokio/task/index.html#working-with-tasks
https://doc.rust-lang.org/edition-guide/rust-2018/error-handling-and-panics/aborting-on-panic.html

8. Blocking I/O in Network trait implementations will block async runtime
threads

Severity: Informational Difficulty: High
Type: Denial of Service Finding ID: TOB-ALEPH-008
Target: AlephBFT

Description

The Network trait specifies send and broadcast functions that are not marked as async
(figure 8.1). If the trait is implemented with blocking versions of the send and broadcast
functions, calls to those functions will block async runtime threads. The AlephBFT user is
responsible for the implementation of the trait and may not be aware of this issue. A
sample implementation of the Network trait in the test code does not block, since it uses
channels to store data for processing.

#[async_trait::async_trait]
pub trait Network<H: Hasher, D: Data, S: Signature, MS: PartialMultisignature>: Send {
type Error: Debug;
/// Send a message to a single node.
fn send(&self, data: NetworkData<H, D, S, MS>, node: NodeIndex) -> Result<(),
Self::Error>;
/// Send a message to all nodes.
fn broadcast(&self, data: NetworkData<H, D, S, MS>) -> Result<(), Self::Error>;
/// Receive a message from the network.
async fn next_event(&mut self) -> Option<NetworkData<H, D, S, MS>>;

Figure 8.1: src/network.rs#L31-1L40

Recommendations
Short term, either mark send and broadcast as async or document the Network trait,
explaining that the send and broadcast implementations must not block.

Long term, be mindful of the fact that blocking functions in async code may introduce
subtle performance issues that lead to downtime.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 18

https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/network.rs#L31-L40

9. Inconsistent handling of closed channel errors

Severity: Informational Difficulty: High

Type: Error Reporting Finding ID: TOB-ALEPH-009
Target: AlephBFT

Description
The code handles closed channel errors in two ways: by using expect (figure 9.1) and by
returning Err (figure 9.2).

self.multisigned_hashes_tx
.unbounded_send(multisigned.clone())
.expect("Channel should be open");

Figure 9.1: src¢/rmc.rs#L230-L232

self.finalizer_tx
.unbounded_send(batch)
.map_err(|e| {
debug! (target: "AlephBFT-extender", "{:?} channel for batches is closed
{:?}, closing", self.node_id, e);

2

Figure 9.2: src/extender.rs#L151-L155

Recommendations
Short term, choose one of the two methods of handling closed channel errors and use it

wherever possible; if it would make more sense to use the other in certain cases, document
that decision.

Long term, ensure that the codebase handles errors consistently. This will make the code
easier to develop and understand.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 19

https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/rmc.rs#L230-L232
https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/extender.rs#L151-L155

A. Vulnerability Classifications

Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging | Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or
software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing a system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management | Related to the identification of authenticated users

Timing Related to race conditions, locking, or the order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security
best practices or Defense in Depth.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is relatively small or is not a risk the customer has indicated is
important.
Medium Individual users’ information is at risk; exploitation could pose

reputational, legal, or moderate financial risks to the client.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 20

High

The issue could affect numerous users and have serious reputational,
legal, or financial implications for the client.

Difficulty Levels

Difficulty

Description

Undetermined

The difficulty of exploitation was not determined during this
engagement.

Low The flaw is commonly exploited; public tools for its exploitation exist
or can be scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of a
complex system.

High An attacker must have privileged insider access to the system, may

need to know extremely complex technical details, or must discover
other weaknesses to exploit this issue.

© 2021 Trail of Bits

Aleph Zero Foundation AlephBFT Assessment | 21

B. Code Quality Recommendations

This appendix contains findings that do not have immediate or obvious security
implications.

e The is_new_fork function could take FulluUnit as an argument instead of
SignedUnit.

e The |oop that recomputes votes in the Extender task could use a labeled outer loop
and could break as soon as a decision is reached instead of repeating the breaking
code.

e Using amatch(decision) { ...} blockin the code that handles voting decisions
would increase the code’s clarity.

e Thereis atypo in the [og messages in the network hub: the "n" is missing from
AlephBFT-network-hub.

e There are typos in the assert messages in the

decoding network data_units_new_unit test.
e The empty comment before the initialize_round function should be removed.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 22

https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/units/store.rs#L75-L85
https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/extender.rs#L240-L258
https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/extender.rs#L272-L285
https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/network.rs#L125-L130
https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/network.rs#L216-L220
https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/network.rs#L216-L220
https://github.com/Cardinal-Cryptography/AlephBFT/blob/b73a6cafa29d9bef78857ec817f078fe677bd6d6/src/extender.rs#L114

C. Fuzzing the Custom Serialization Roundtrip

Using the rust-fuzz/cargo-fuzz crate, Trail of Bits developed a fuzzing harness to test the
AlephBFT type serialization functions. This led us to discover that there are multiple byte
representations in the code that decode to the same BoolNodeMap object, which could be
problematic in certain cases (TIOB-ALEPH-006).

Figure C.1 shows the fuzzing harness that we implemented. There are certain changes that
will need to be made to run this fuzzing harness (e.g., making certain types public and
using the file structure required by cargo-fuzz). These changes are included in the patch
provided with this report, which was developed on commit b73a6ca and can be added to
the code through the git apply <patchfile> command.

To launch the harness, use the cargo fuzz run fuzz-codec command. When it finds a
decoding roundtrip issue, it will display the raw bytes used for decoding, the encoded
objects’ representation, and the leftover data that was not decoded (the variable d). This
information may be displayed as follows:

Type: aleph_bft::nodes: :BoolNodeMap
d (leftover/undecoded data) = []
- Encoded data:

rawl = [o, 36, 0, 0, 0]

raw2 = [0, 0, 0, 0, 0]

- Decoded objects:

obj1 = 'BoolNodeMap()"

obj2 = 'BoolNodeMap()"

thread '<unnamed>' panicked at 'rawl != raw2', fuzz_targets/fuzz-codec.rs:42:25

The patch also contains a fuzz/fuzz_targets/main.rs file that can be used to debug
given input (through an IDE, for example). It includes a few inputs that cause multiple byte
representations to be decoded to the same object.

#![no_main]
use libfuzzer_sys::fuzz_target;

use std::{
collections::hash_map::DefaultHasher,
hash: :Hasher,
fmt: :Debug,
cmp::PartialEq

}s

use aleph_bft::{
units::{ControlHash, UnitCoord},
nodes: :BoolNodeMap

}s

// Note: set in Cargo.toml to be the same parity-scale-codec as used by AlephBFT

use codec::{Decode, Encode};

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 23

https://github.com/rust-fuzz/cargo-fuzz

fn fuzz_codec_roundtrip<T: Decode + Encode + Debug + PartialEgq>(mut data: &[u8]) {
let rawl = data.clone();
let maybe_object = <T>::decode(&mut data);

// Skip if the input failed to decude

if let Ok(object) = maybe_object {
let mut data2: &[u8] = &object.encode();
let raw2 = data2.clone();

let expected_object = <T>::decode(&mut data2);

match expected_object {
Ok (object2) => {
if object == object2 {

// Note: we ignore the leftover/not decoded bytes

let bytes_decoded = rawl.len() - data.len();

if &rawl[..bytes_decoded] != raw2 {
println!("Type: {}", std::any::type_name::<T>());
println!("d (leftover/undecoded data) = {:?}", data);
println!("- Encoded data:");

println!("rawl = {:?}", rawl);
println!("raw2 = {:?}", raw2);
println!("- Decoded objects:");
println!("obj1 = "{:?}"'", object);
println!("obj2 = "{:?}'", object2);
panic!("rawl != raw2");
}
return
}
panic!("obj != obj2; obj={:?}, obj2={:?}", object, object2);
}
Err(e) => {
panic!("Cannot .decode().encode().decode() - is that a bug? err: {}", e);
}
}
s
}
// Hasher64 -- not cryptographically secure, mocked for demonstration purposes

// (taken from AlephBFT examples)
#[derive(PartialEq, Eq, Clone, Debug)]
struct Hasher64;

impl aleph_bft::Hasher for Hasher64 {
type Hash = [u8; 8];
fn hash(x: &[u8]) -> Self::Hash {
let mut hasher = DefaultHasher::new();
hasher.write(x);
hasher.finish().to_ne_bytes()

}

fuzz_target!(|data: &[u8]]| {
//fuzz_codec_roundtrip::<ControlHash::<Hasher64>>(data);
//fuzz_codec_roundtrip::<UnitCoord>(data); // no trigger?
fuzz_codec_roundtrip::<BoolNodeMap>(data);

1)

Figure C.1: A fuzzing harness used to test custom AlephBFT type encoders.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 24

D. Fix Log

The Aleph Zero team has addressed the following issues in their codebase as a result of
our assessment, and each of the fixes was verified by Trail of Bits.

After completion of the initial assessment, Aleph Zero team addressed the discovered
issues in a series of already merged pull requests (,

| Title Severity Status

1 Code documentation does not reference the paper | Informational | Fixed

2 | Use of different types to represent rounds Informational | Fixed

3 Use of incorrect loop break to handle add to store [Informational | Fixed
and handle events failures

4 Incorrect state rollback upon removal of forker’s Informational | Fixed
units

5 Lack of error handling in Terminal’s post-insert Informational | Fixed
hooks

6 Different byte representations decode to the same | Informational | Fixed
data

7 Errors in async code leave the program in an Low Fixed
inconsistent state

8 | Blocking I/0 in Network trait implementations will [Informational | Fixed
block async runtime threads

9 Inconsistent handling of closed channel errors Informational | Fixed

For additional information for each fix, please refer to the detailed fix log below.

Detailed fix log

TOB-ALEPH-001: Code documentation does not reference the paper
Fixed in PR #110. The code is now commented with references to the Aleph Zero paper and
the implementation documentation.

TOB-ALEPH-002: Use of different types to represent rounds

© 2021 Trail of Bits

Aleph Zero Foundation AlephBFT Assessment | 25

https://github.com/Cardinal-Cryptography/AlephBFT/pull/110

Fixed in PR #100. The code was changed to use the Round type everywhere, casting values
to the usize type when accessing vector elements.

TOB-ALEPH-003: Use of incorrect loop break to handle add_to_store and
handle_events failures
Fixed in PR #101. The code was changed to use a return statement instead of break.

TOB-ALEPH-004: Incorrect state rollback upon removal of forker’s units
Fixed in PR #102. The missing round decrementation was added along with tests for the
state rollback.

TOB-ALEPH-005: Lack of error handling in Terminal’s post-insert hooks
Fixed in PR #106. The hooks were changed to use panic instead of simply logging that an
error occurred.

TOB-ALEPH-006: Different byte representations decode to the same data
Fixed in PR #106. We ran the fuzzing harness from the Appendix C on the updated code
and didn't find any different examples which decode to the same data.

TOB-ALEPH-007: Errors in async code leave the program in an inconsistent state

Fixed in PR #109. The spawn_essential function was added to the SpawnHandle trait which
returns a task handle. The handle is used to ensure that the error handling is propagated
to parent tasks.

TOB-ALEPH-008: Blocking 1/0 in Network trait implementations will block async
runtime threads

Fixed in PR #103. Documentation was added to the Network trait warning implementers
about blocking I/0 in send and broadcast function implementations.

TOB-ALEPH-009: Inconsistent handling of closed channel errors

Fixed in PR #108. The error handling of closed channels is now consistent across the
codebase and uses panic.

© 2021 Trail of Bits Aleph Zero Foundation AlephBFT Assessment | 26

https://github.com/Cardinal-Cryptography/AlephBFT/pull/100
https://github.com/Cardinal-Cryptography/AlephBFT/pull/101
https://github.com/Cardinal-Cryptography/AlephBFT/pull/102
https://github.com/Cardinal-Cryptography/AlephBFT/pull/106
https://github.com/Cardinal-Cryptography/AlephBFT/pull/106
https://github.com/Cardinal-Cryptography/AlephBFT/pull/109
https://github.com/Cardinal-Cryptography/AlephBFT/pull/103
https://github.com/Cardinal-Cryptography/AlephBFT/pull/108

